South China Sea throughflow impact on the Indonesian throughflow
نویسندگان
چکیده
[1] In 2008–2009 the Makassar throughflow profile changed dramatically: the characteristic thermocline velocity maximum increased from 0.7 to 0.9 m/sec and shifted from 140 m to 70 m, amounting to a 47% increase in the transport of warmer water between 50 and 150 m during the boreal summer. HYCOM output indicates that ENSO induced change of the South China Sea (SCS) throughflow into the Indonesian seas is the likely cause. Increased SCS throughflow during El Niño with a commensurate increase in the southward flow of buoyant surface water through the Sulu Sea into the northern Makassar Strait, inhibits tropical Pacific surface water injection into Makassar Strait; during La Niña SCS throughflow is near zero allowing tropical Pacific inflow. The resulting warmer ITF reaches into the Indian Ocean, potentially affecting regional sea surface temperature and climate. Citation: Gordon, A. L., B. A. Huber, E. J. Metzger, R. D. Susanto, H. E. Hurlburt, and T. R. Adi (2012), South China Sea throughflow impact on the Indonesian throughflow, Geophys. Res. Lett., 39, L11602, doi:10.1029/2012GL052021.
منابع مشابه
Advection and diffusion of Indonesian throughflow water within the Indian Ocean South Equatorial Current
Warm, low salinity Pacific water weaves through the Indonesian Seas into the eastern boundary of the Indian Ocean. The Indonesian Throughflow Water (ITW) adds freshwater into the Indian Ocean as it spreads by the advection and diffusion within the Indian Ocean's South Equatorial Current (SEC). The low salinity throughflow trace, centered along 12øS, stretches across the Indian Ocean, separating...
متن کاملInterannual variability of the South China Sea throughflow inferred from wind data and an ocean data assimilation product
[1] The Luzon Strait transport, as an index for the South China Sea throughflow, has attracted much attention recently. In this study the interannual variability of Luzon Strait transport is examined, using the Island Rule and results from ocean data assimilation. Transport variability obtained from these two approaches is consistent with each other. Assessment of contribution from each integra...
متن کاملIndo-Pacific Climate Interactions in the Absence of an Indonesian Throughflow
The Pacific and Indian Oceans are connected by an oceanic passage called the Indonesian Throughflow (ITF). In this setting, modes of climate variability over the two oceanic basins interact. El Niño–Southern Oscillation (ENSO) events generate sea surface temperature anomalies (SSTAs) over the Indian Ocean that, in turn, influence ENSO evolution. This raises the question as to whether Indo-Pacif...
متن کاملHow Can Tropical Pacific Ocean Heat Transport Vary?
Pacific Ocean oceanic heat transport is studied in an ocean model coupled to an atmospheric mixed-layer model. The shallow meridional overturning circulation cells in the Tropics and subtropics transport heat away from the equator. The heat transport by the horizontal gyre circulation in the Tropics is smaller and directed toward the equator. The response of the Pacific oceanic heat transport t...
متن کاملIntraseasonal Variability in the Indo–Pacific Throughflow and the Regions Surrounding the Indonesian Seas
Intraseasonal oscillations in sea level, sea surface temperature, and upper ocean flow field have recently been observed in various locations surrounding the Indonesian seas. While the observed oscillations at these locations have similar wave periods ranging from 30 to 85 days, their forcing mechanisms can involve different dynamic processes. In order to clarify the dynamic processes essential...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012